博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
mysql五补充部分:SQL逻辑查询语句执行顺序
阅读量:6689 次
发布时间:2019-06-25

本文共 10611 字,大约阅读时间需要 35 分钟。

一 SELECT语句关键字的定义顺序

 
SELECT DISTINCT 
FROM
JOIN
ON
WHERE
GROUP BY
HAVING
ORDER BY
LIMIT

二 SELECT语句关键字的执行顺序

(7)     SELECT (8)     DISTINCT 
(1) FROM
(3)
JOIN
(2) ON
(4) WHERE
(5) GROUP BY
(6) HAVING
(9) ORDER BY
(10) LIMIT

三 准备表和数据

1. 新建一个测试数据库TestDB;

create database TestDB;

2.创建测试表table1和table2;

CREATE TABLE table1 (     customer_id VARCHAR(10) NOT NULL,     city VARCHAR(10) NOT NULL,     PRIMARY KEY(customer_id) )ENGINE=INNODB DEFAULT CHARSET=UTF8; CREATE TABLE table2 (     order_id INT NOT NULL auto_increment,     customer_id VARCHAR(10),     PRIMARY KEY(order_id) )ENGINE=INNODB DEFAULT CHARSET=UTF8;

3.插入测试数据;

INSERT INTO table1(customer_id,city) VALUES('163','hangzhou'); INSERT INTO table1(customer_id,city) VALUES('9you','shanghai'); INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou'); INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou'); INSERT INTO table2(customer_id) VALUES('163'); INSERT INTO table2(customer_id) VALUES('163'); INSERT INTO table2(customer_id) VALUES('9you'); INSERT INTO table2(customer_id) VALUES('9you'); INSERT INTO table2(customer_id) VALUES('9you'); INSERT INTO table2(customer_id) VALUES('tx'); INSERT INTO table2(customer_id) VALUES(NULL);

准备工作做完以后,table1和table2看起来应该像下面这样:

mysql> select * from table1; +-------------+----------+ | customer_id | city     | +-------------+----------+ | 163         | hangzhou | | 9you        | shanghai | | baidu       | hangzhou | | tx          | hangzhou | +-------------+----------+ 4 rows in set (0.00 sec) mysql> select * from table2; +----------+-------------+ | order_id | customer_id | +----------+-------------+ | 1 | 163 | | 2 | 163 | | 3 | 9you | | 4 | 9you | | 5 | 9you | | 6 | tx | | 7 | NULL | +----------+-------------+ 7 rows in set (0.00 sec)

四 准备SQL逻辑查询测试语句

#查询来自杭州,并且订单数少于2的客户。 SELECT a.customer_id, COUNT(b.order_id) as total_orders FROM table1 AS a LEFT JOIN table2 AS b ON a.customer_id = b.customer_id WHERE a.city = 'hangzhou' GROUP BY a.customer_id HAVING count(b.order_id) < 2 ORDER BY total_orders DESC;

五 执行顺序分析

在这些SQL语句的执行过程中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),我现在就来跟踪这个虚拟表的变化,得到最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。

执行FROM语句

第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了<left_table><right_table>两个表,我们到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积

关于什么是笛卡尔积,请自行Google补脑。经过FROM语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:

+-------------+----------+----------+-------------+| customer_id | city     | order_id | customer_id |+-------------+----------+----------+-------------+| 163         | hangzhou |        1 | 163         || 9you        | shanghai |        1 | 163         || baidu       | hangzhou |        1 | 163         || tx          | hangzhou |        1 | 163         || 163         | hangzhou |        2 | 163         || 9you        | shanghai |        2 | 163         || baidu       | hangzhou |        2 | 163         || tx          | hangzhou |        2 | 163         || 163         | hangzhou |        3 | 9you        || 9you        | shanghai |        3 | 9you        || baidu       | hangzhou |        3 | 9you        || tx          | hangzhou |        3 | 9you        || 163         | hangzhou |        4 | 9you        || 9you        | shanghai |        4 | 9you        || baidu       | hangzhou |        4 | 9you        || tx          | hangzhou |        4 | 9you        || 163         | hangzhou |        5 | 9you        || 9you        | shanghai |        5 | 9you        || baidu       | hangzhou |        5 | 9you        || tx          | hangzhou |        5 | 9you        || 163         | hangzhou |        6 | tx          || 9you        | shanghai |        6 | tx          || baidu       | hangzhou |        6 | tx          || tx          | hangzhou |        6 | tx          || 163         | hangzhou |        7 | NULL        || 9you        | shanghai |        7 | NULL        || baidu       | hangzhou |        7 | NULL        || tx          | hangzhou |        7 | NULL        |+-------------+----------+----------+-------------+

总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。

执行ON过滤

执行完笛卡尔积以后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:

+-------------+----------+----------+-------------+| customer_id | city     | order_id | customer_id |+-------------+----------+----------+-------------+| 163         | hangzhou |        1 | 163         || 163         | hangzhou |        2 | 163         || 9you        | shanghai |        3 | 9you        || 9you        | shanghai |        4 | 9you        || 9you        | shanghai |        5 | 9you        || tx          | hangzhou |        6 | tx          |+-------------+----------+----------+-------------+

VT2就是经过ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。

添加外部行

这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOINRIGHT OUTER JOINFULL OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。

LEFT OUTER JOIN把左表记为保留表,得到的结果为:

+-------------+----------+----------+-------------+| customer_id | city     | order_id | customer_id |+-------------+----------+----------+-------------+| 163         | hangzhou |        1 | 163         || 163         | hangzhou |        2 | 163         || 9you        | shanghai |        3 | 9you        || 9you        | shanghai |        4 | 9you        || 9you        | shanghai |        5 | 9you        || tx          | hangzhou |        6 | tx          || baidu       | hangzhou |     NULL | NULL        |+-------------+----------+----------+-------------+

RIGHT OUTER JOIN把右表记为保留表,得到的结果为:

+-------------+----------+----------+-------------+| customer_id | city     | order_id | customer_id |+-------------+----------+----------+-------------+| 163         | hangzhou |        1 | 163         || 163         | hangzhou |        2 | 163         || 9you        | shanghai |        3 | 9you        || 9you        | shanghai |        4 | 9you        || 9you        | shanghai |        5 | 9you        || tx          | hangzhou |        6 | tx          || NULL        | NULL     |        7 | NULL        |+-------------+----------+----------+-------------+

FULL OUTER JOIN把左右表都作为保留表,得到的结果为:

+-------------+----------+----------+-------------+| customer_id | city     | order_id | customer_id |+-------------+----------+----------+-------------+| 163         | hangzhou |        1 | 163         || 163         | hangzhou |        2 | 163         || 9you        | shanghai |        3 | 9you        || 9you        | shanghai |        4 | 9you        || 9you        | shanghai |        5 | 9you        || tx          | hangzhou |        6 | tx          || baidu       | hangzhou |     NULL | NULL        || NULL        | NULL     |        7 | NULL        |+-------------+----------+----------+-------------+

添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。

由于我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了以下这条数据:

| baidu       | hangzhou |     NULL | NULL        |

现在就把这条数据添加到VT2表中,得到的VT3表如下:

+-------------+----------+----------+-------------+| customer_id | city     | order_id | customer_id |+-------------+----------+----------+-------------+| 163         | hangzhou |        1 | 163         || 163         | hangzhou |        2 | 163         || 9you        | shanghai |        3 | 9you        || 9you        | shanghai |        4 | 9you        || 9you        | shanghai |        5 | 9you        || tx          | hangzhou |        6 | tx          || baidu       | hangzhou |     NULL | NULL        |+-------------+----------+----------+-------------+

接下来的操作都会在该VT3表上进行。

执行WHERE过滤

对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:

+------------+----------+----------+-------------+| customer_id | city     | order_id | customer_id |+-------------+----------+----------+-------------+| 163         | hangzhou |        1 | 163         || 163         | hangzhou |        2 | 163         || tx          | hangzhou |        6 | tx          || baidu       | hangzhou |     NULL | NULL        |+-------------+----------+----------+-------------+

但是在使用WHERE子句时,需要注意以下两点:

  1. 由于数据还没有分组,因此现在还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤;
  2. 由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,如:SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。

执行GROUP BY分组

GROU BY子句主要是对使用WHERE子句得到的虚拟表进行分组操作。我们执行测试语句中的GROUP BY a.customer_id,就会得到以下内容(默认只显示组内第一条):

+-------------+----------+----------+-------------+| customer_id | city     | order_id | customer_id |+-------------+----------+----------+-------------+| 163         | hangzhou |        1 | 163         || baidu       | hangzhou |     NULL | NULL        || tx          | hangzhou |        6 | tx          |+-------------+----------+----------+-------------+

得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。

执行HAVING过滤

HAVING子句主要和GROUP BY子句配合使用,对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将得到以下内容:

+-------------+----------+----------+-------------+| customer_id | city     | order_id | customer_id |+-------------+----------+----------+-------------+| baidu       | hangzhou |     NULL | NULL        || tx          | hangzhou |        6 | tx          |+-------------+----------+----------+-------------+

这就是虚拟表VT6。

SELECT列表

现在才会执行到SELECT子句,不要以为SELECT子句被写在第一行,就是第一个被执行的。

我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:

+-------------+--------------+| customer_id | total_orders |+-------------+--------------+| baidu       |            0 || tx          |            1 |+-------------+--------------+

还没有完,这只是虚拟表VT7。

执行DISTINCT子句

如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

由于我的测试SQL语句中并没有使用DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。

执行ORDER BY子句

对虚拟表中的内容按照指定的列进行排序,然后返回一个新的虚拟表,我们执行测试SQL语句中的ORDER BY total_orders DESC,就会得到以下内容:

+-------------+--------------+| customer_id | total_orders |+-------------+--------------+| tx          |            1 || baidu       |            0 |+-------------+--------------+

可以看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。

执行LIMIT子句

LIMIT子句从上一步得到的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BY的LIMIT子句,得到的结果同样是无序的,所以,很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。

MySQL数据库的LIMIT支持如下形式的选择:

LIMIT n, m

表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制(现在的大数据处理,大都使用缓存)

转载于:https://www.cnblogs.com/fmgao-technology/p/9219531.html

你可能感兴趣的文章
跨站请求伪造CSRF
查看>>
关于同一用户不能同时登录问题的探讨(2/2)
查看>>
IE bug之location.href没有referer
查看>>
VB将MSHFlexGrid数据导出到Excel文件通用功能
查看>>
Opengl绘制我们的小屋(三)纹理绘制
查看>>
session 防止表单重复提交
查看>>
Windows Phone开发(1):概论
查看>>
如何修改博客样式
查看>>
C#语法之泛型
查看>>
ArcGIS API for Silverlight中加载Google地形图(瓦片图)
查看>>
如何生成excel文件作为图像识别结果
查看>>
Liferay-Activiti 功能介绍 (新版Liferay7基本特性)
查看>>
ORACLE删除当前用户下所有的表的方法
查看>>
html php 重定向 跳转 刷新
查看>>
Dom4j解析xml
查看>>
佛祖保佑,永无bug
查看>>
Lucene学习总结之五:Lucene段合并(merge)过程分析
查看>>
ubuntu 安装过程记录
查看>>
my blog zen :分享所学,backup一切~
查看>>
JAVA上加密算法的实现用例MD5/SHA1,DSA,DESede/DES,Diffie-Hellman的使用(转)
查看>>